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ABSTRACT 

The initial post-buckling behavior of double curvature shell segments subject 

to several loading conditions is determined on the basis of Koiter's general theory 

of initial post-buckling behavior. Previously, the classical buckling loads 

associated with these shells were shown t o  be strongly dependent on the two radii 

of curveture and their relative magnitudes. 

behavior and associated imperfection-sensitivity are also seen to be strongly 

Here, the initial post-buckling 

dependent on the two curvatures. 

INTRODUCTION 

Among those structures whose buckling strengths are known to be highly 

sensitive to structural imperfections are spherical and cylindrical shells subject 

to external pressure, axially loaded narrow cylindrical panels, some simple trcsses 

and, of course, the axially comyressed cylindrical shell. 

buckling analysis of such a structure, by itself, is incapable of predicting the 

buckling strength. 

knowledge of the initial imperfections of the unloaded structure; but, in general, 

such information is not at the disposal of either the analyst or designer. 

The classical (linear) 

Accurate predictions for a given structure require exact 

To 
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i dste, mainly because of the difficulty of measuring imperfections of actual as well 

as test specimem, analytic work has served to provide information as to the 

relative inperfectioc-sensitivity of structures and, thus, to qualitatively 

establish the validity or non-validity of the classical buckling analysis. 

I 

! 
I:: this psper some double curvature shell structures, whose classical budding 

behavior hes orily recently been studied, are investigated with the view tovard 

determining their initial post-buckling behevior and, what is closely related, the 

dependence of their bzlckling strengths on imperfections in the  form of initial 

dsvfati2ns OS the shell mlddle  surface from the perfect configuration. 

is made within the framework of Koiter's general theory of initial post-buckling 

bohavior [l]. 

T k i s  study 

The sl..ell segments show2 in Figure 1 can be thought of as sections of complete 

toroidal shells. 

by Stein and McEiman [Z] for three different pressure loadings. 

analysis for the case of buckling under lateral pressure are reproduced in 

Figure 2. Here, the buckling parameter, K = pr g2/r2D (where p is the lateral 

pressure, D = Zh3/12(l-v2) i s  the bending stiffness, h is the shell thickness 

and 

The classical buckling analysis of these shells has Seen given 

Resalts of their 

Y 

v is Poisson's ratio) is a function of the length parameter 

and the ratio of the two radii of curvatures r /r . An elucidatiot of further 

details relevanc to this plot, such as boundary conditions, will be given in the 

next secrion. 

difference Seiveen the predicted bucklicg strengths of'the bowed-out and the bowed- 

Y X  

At this point, however, attention is drawn to the significant 

in shells which are otherwise of essentially the same dimensions. 

the classical buckling anaiysis the buckling strength of the bowed-out shell can be 

several orders of magnitude larger than that of the bowed-in configuration. 

On the basis of 

One 
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might conjecture, and, indeed, this will prove to be the case, that the initial 

post-buckling analysis indicates a significantly increased imperfection-secsitivity 

hand-in-hand with the higher classical buckling strength. 

Two other loading condftions are studied in addition to the lateral pressure 

case. Quite similar, yet more imperfection-sensitive, is the external pressure 

case. 

bcved-out segments subject to axial tension is determined. 

In the third case the classical and initial post-buckling behavior of the 

CLASSICAL BUCKLIRG ANALYSIS 

Bore a xief exposition of Stein and MzElman's classical analysis is given. 

Buckling uader axial tension, although not considered by these authors, is also 

included in the results given below. 

e3qloyed ia the classical, ES well as the initial post-buckling, analysis of the 

toroidal segments. 

respect to che axial coordinate, that is 

equations, given by Stein and IkElman, are written here In terms of the normal 

Donnell-type nr;nXnear shell theory is 

Consideration is restricted to segments which are shallow with 

The linear Donne11 buckling Il/rx << 1 . 

displacement w and a stress function f 

DO4, + -  1 f 3. - 1 f - ANOW - ANOW O 
1: ,= rx s~~ x ,xx Y 7w Y 

and 

W = o  1 - -  W - 1 'J4f - - 1 
r ,xx r ,YY X 

Eh 
Y 

where E is Yomg's Modulus snd the assumption of shallowness in the axial 

direction permits us to write V 4  = ( C l 2  . The additional buckling ,= SYY 
membrane stresses are given by and 

In Equation (1) AX: 2nd A N o  represent the x and y components of Y 
resultaslt membrsne stresses associated with the prebuckling deformation of the 

perfect shell. Except for a narrow region near each end of the shell the 
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webuckling state of stress i s  homogeneous and, for each loading system 

investigated here, is lPnearly dependent on the externally applied load. 

paper the edge distortions are neglected and, thus, the membrane stresses 

and AN' are constant over the entire shell. The load parameter A is linearly 

related to the applied load and N: snnd No Y 
definite manner depending on the particular loading system. Refined analyses for 

cylindrical shells [3] accounting for the end distortions have shown that, except 

for very short shells, the local end effects can be neglected when the buckle 

pattern has only one half wavelength over the axial length. 

approximate calculations neglecting the edge zone distortions should not introduce 

significant errors as long as z > 10 say. Since the underlying aim of this study 

is to discover the role of the two radii of curvature, rx and 1: b in 

determining the initial post-buckling behavior, we follow Stein and McElman and 

choose the boundary conditions which are most tractable from the point of view of 

the analysis. At each end of the shell the normal and circumferential tangential 

displacements are required to vanish as is the additional buckling stress 

N - f  and the additional bending stress Mx . In terms of w and f these 

are equivalent to 

In this 

ANo 
X 

Y 
are assumed t o  be fixed in some 

It is expected that 

Y 

X S Y Y  

w = w  = f  = f = O  at x - 0, a (3) ,= 9 xx 

Other boundary conditions, completely clamped for example, can be expected to give 

quite different predictions for the classical buckling load. Nevertheless, it is 

felt that a complete study based on these boundary conditions should lend at least 

qualitative insight to the imperfection-sensitivity of similar shells with other 

edge conditions. 

Equations (1) and (2) with the boundary conditions (3) comprise the linear 

eigenvalue problem for determining the classical buckling load. The eigenfunction 
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s i n  QY mrx w = s in  - mn R r 
Y 

is assoc ia ted  with t h e  eigenvalue 

where = nll/nr . The classical buckling load X corresponds t o  t h e  minimum 

vclue  of X among a l l  poss ib le  in teger  values of m and n . For each of t h e  

t h r e e  loading cocdi t ions  considered i n  t h i s  paper t h e  minimum value of 

always occurs for m = 1 . The minimum wi th  respect t o  n is found by t r e a t i n g  

il 

t h a t  n i s  s u f f i c i e n t l y  l a rge .  The r e s t r i c t i o n  to n > 5 , sap, is necessary i n  

sny case  s ince  Donnell-type equations a re  being used. 

Y C 

all 

X mn 

- 
as a coatinuous v a r i a b l e  under t h e  assumption, t o  be v e r i f i e d  a p o s t e r i o r i ,  

The ind ica ted  ca l cu la t ions  were car r ied  out with t h e  a i d  of a d i g i t a l  computer 

and w i l l  be presented i n  sec t ions  t o  follow. For t h e  two pressure  loadings t h e  

r e s u l t s  are i n  agreement with S te in  and NcElman's ca l cu la t ions .  ' 

DESCRIPTION OF INITIAL POST-BUCKLING ANALYSIS 

The l i n e a r  buckling ana lys i s  p red ic t s  t h e  cr i t ical  load and associated 

buckling rcode, o r  modes, of t h e  s t ruc tu re .  A unique buckling mode is  predicted i n  

every case  considered i n  t h i s  paper. The i n i t i a l  post-buckling ana lys i s  of such a 

s t r u c t u r e  provides a s i n g l e  nonl inear ,  a lgeb ra i c  equation of equilibrium r e l a t i n g  

t h e  app l i ed  load t o  t h e  d e f l e c t i o n  i n  t h e  buckling mode. The magnitude of t h e  

i n i t i a l  imperfection a l s o  appears i n  t h i s  equation. 

The normal displacement of t h e  buckling mode d e f l e c t i o n  is  

w Sh sin(nxl!L)sin(ny/r ) Y 
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where n is determined by the classical analysis axid 5 is the mode deflection 

relative to the shell thickness h . 
buckling nodes are most critical if, indeed, imperfections play any degrading role 

at all. 

perfect toroidal form is denoted by 

Initial imperfections in the form of the 

In the present analysis the initial deviation of the shells from the 

and is taken to be 

- -  
w = Sh sin(rx/R)sin(ny/r ) (5) 

Y 
- 

where here also, the imperfection 5 is measured relative to the shell thickness. 

The equilibrium equation obtained from the Koiter analysis, valid in the 

initial post-buckling regime, is of the form 

where X/Xc is the ratio of t h e  applied load h to the classical buckling load 

X . The derivation of this equation and the calculation of the coefficients a 

a d  b are given in the Appendix. 
C 

Each of the structure-load combinations considered in this paper is of the 

"cubic type"; that is, 

behavior is determined by the term bE3 in the equilibrium equation. Thus the 

governing equation is 

a is identically zero and the initial post-buckling 

This equation i s  asymptotically valid for  small 5 and . 
The load-deflection behavior of the cubic structure is depicted in the two 

plots of Figure 3 .  The perfect structure, 5 = 0 suffers no deflection in the  

5 node prior to buckling. At A = Xc bifurcation fron the prebuckling stare 

occurs. If b > 0 the applied load A increases with increasing deflection 5 ; 

iq'nfle if b 0 the equilibrium curve of X vs. 5 falls in the initial post- 

buckling region. 

- 

The effect of an initial imperfection on the load-deflection 
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b 4 0 , is the cubic structure imperfection-sensitive in the sense that 

imperfections result in reduced values of the maximum load the structure can 

sup??rt. An expression relating the buckling load (maximum load) h of the 

inperfect structure to the imperfection magnitude for the case b < 0 

* 

is easily 
dX 
d5 found from Equation (7) in conjunction with the condition - -= 0 This is 

* 
The plot of X /Ac vs. It} is given in Figure 4. If 6 is of order unity, 

- 
imperfections which are small relative to the shell thickness (i.e., 5 a small 

fraction of unity) will result in large reductions of the buckling load. 

The results of the 5 calculation for the three loading cases are presented 

and. discussed in the next three sections; and as we have mentioned, the details 02 

the calculations aze left for the Appendix. 

TOROIDAL SEGEIENT SUBJECT TO LATERAL PSESSURE 

The prebuckling state of stress of a perfect, shallow toroidal segment subject , 
‘to lateral pressure p is uniform, except in a narrow region near the ends of the 

skiell, and is given by 

““A 
O L L U  ..*. 

IN0 Y = 

Results from the classical buckling analysis have been referred to in the 

introduction and are shown in Figure 2. 

K = pr g2/3r2D as a function of 

This is a piot of the buckling parameter 

z = (l-v2)1’2!22/r h for several values of 
Y Y 

Figure 5 contains plots of b/( l -v2)  , again, as a function of z for severs1 

values of r /r . The bowed-out segments, r /r > 0 , are imperfection-sensitive 

( i . e . ,  b < 0 ) over a major part of the range of z . The more the toroidal shell Y X  Y X  
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is bowed-out the more negative is b and, thus, the more sensitive the structure 

to imperfections. 

(ry/rx = 0) , for which 
to the shell thickness will, therefore, result in significant reductions in the 

buckling pressure. For configurations which are sufficiently bowed-in b is 

actually positive, although quite small for sufficiently large z , over the'entire 
range of z . The bowed-out shell has a higher imperfection-sensitivity 

associated with its considerably higher classical buckling load. 

There is a significant range, even for the cylindrical shell 

is of order unity, and small imperfections relative 

The initial slope of the generalized load-deflection curve of the perfect 

shell can also be determined from the initial post-buckling analysis. 

calculation is given in the Appendix. 

This 

The resulting pressure vs. effective change 

in volume relation is 

l where w is the average normal displacement of the shell and woc is the pre- 
l ave 

buckling normal displacement at the critical pressure. The coefficient K , also 

calculated in the Appendix, i s  plotted in Figure 6 as a function of 

several values of r /r . 
z for 

Y X  
The results for the lateral pressure buckling of a cylindrical shell 

(r ir = oj 

bazigo [4]. 

are in agreement wich resuits obtained previeiisu by Eidiansky a d  
I Y X  
1 The method employed here is the same as that used by these authors. 

Roiter [5] has determined the initial post-buckling behavior of narrow cylindrical 

panels under axial compression. Like the toroidal shells considered here the 

narrow panel has a unique buckling mode and its initial post-buckling behavior is 

determined by the coefficient b of the cubic term in Equation (7). Koiter finds 

that depending on the narrowness of the panel the post-buckling behavior can 

correspond t o  either an initially rising or falling load-deflection curve. 
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In this case there is a prebuckling axial compressive stress in addition to 

the circumferential stress according to 

and ANo = -pr (1-r /2rx) (10) 1 AN: = - pry 
Y Y Y  

The results of the classical buckling analysh are shown in Figure 7 .  

are similar to the lateral pressure case although it is noted that the discrepancy 

Setween the buckling pressures of the bowed-in and bowed-out shells is emphasized 

even more. 

The trends 

Plots of b/(l-v2) vs. z for different values of r /r are shown in 
Y X  

Figure 8. 

the previous case. 

As would be expected the shells are more imperfection-sensitive than in 

When r /r = 1 the snell is locally spherical at each point on its surface 
Y X  

and the prebuckling stresses are exactly those Corresponding to a complete 

spherical shell of similar radius and thickness, namely 

classical buckling pressure of the r /r = 1 case for large z is also that for 

a complete spherical shell 

y 1 pr . The Nx = N - 
Y 

Y X  

2 
P "  J30 

Furthermore, when r /r = 1 , there is not 

amber of buckling modes associated with the 

analysis employed in this paper is no longer 

Y X  
a unique buckling mode, but a large 

classical buckling pressure and the 

valid. The multimode post-buckling 

behavior of a shallow section of a complete spherical shell has been studied in 

Reference [ 6 ] .  

buckling load-imperfection relation for small imperfections 

Tne spherical shell is a "quadratic type" Structure and the 
- E is of the form 

- 1/2 1 - AtAc 2 (a0 

while the analogous relation for a "cubic" structure for small 5: is 
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has also been studied by Budiansky and Amazigo and their results coincide with the 

ry/rx = 0 

TOROIDAL SEGEIEMTS SUSJECT TO AXIAL TENSION 

calculations presented here. I 
The prebuckling state of stress in the perfect toroidal shell resulting from 

an applied axial stress resultant No is 

and a compressive circumferential stress will be induced only if r /r > 0 . In 
other words, buckling in tension occurs only for the bowed-out shells. 

I Y X  
The results 

of the linear buckling analysis ara given in Figure 9 where, now, the buckling 

parameter is K = N O Q ~ / T * D  . 
The b plots, analogous to those of Figures 5 and 8 ,  are presented in 

Figure 10. 

inperfections than the previous pressure loading cases. If rt,/ry < 7 the 

toroidal segments appear to be relatively insensitive to imperfections. 

of the length parameter less than a certain value, depending on ry/rx , b 
positive and the load increases in the initial post-buckling region. 

Apparently, axial buckling is less influenced by initial shell 
1 

J - 
For values 

is 

i 

Figure 11 gives plots of K which appears in the load-elongation relation of 

the perfect shell 

E x 1 x  
- 5 -  E A + ;(r -1) 
oc C C. 

where E is the axial elongation and cOc is the prebuckling axial elongation at 
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the critical load. Depending on the value of r /r and z , the slope of the 
initial post-buckling load elongation curve can be either almost that of the pre- 

buckling curve or sharply falling. These calculations are given in the Appendix. 

Y X  

Yao [ 7 ]  compared experimentally obtained buckling loads of axially loaded, 

truncated hemispheres with predictions based on a linear buckling analysis. 

results presented in this section for segments of spheres, 

directly applicable since both Yao's calculations and the tests correspond to 

claaped end conditions. 

expected with respect to the degree of imperfection-sensitivity of clamped and 

simply supported shells. 

sufficiently small) to justify, if only approximately, the shallowness assmption 

made in the present analysis. 

slightly over one half the classical buckling loads with the length parameters 

falling in the range 

the z ' s  of the test specimens falls within the imperfection-sensitive range pre- 

dicted by the present analysis. 

The 

r /r = 1 , are not 
Y X  

On the other hand, qualitative agreement should be 

The test specimens were sufficiently short (i.e., 2/rx 

The test buckling loads ranged from one third to 

50 e z < 160 . It is interesting to note that the range of 

APPENDIX: INITIAL POST-BUCKLING CALCULATIONS 

DOWNELL-TVPE NONLINEAR SHELL EQUATIONS 

The membrane strains E c and E of Donnell-type theory are related 
x '  Y XY 

to the normal and tangential displacements to the shell middle surface w u , v 

by 

1 
E = v  + w / r  + ~ w 2  + G  w Y SY Y *Y ,Y ,Y 

l 

j and 2e = v  + u  ew w + w  w + w  w 
XY ,x ,Y ,x ,Y Vx 8Y ,x S Y  
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where w is the initial normal deflection of the shell middle surface from the 

perfect toroidal segment: with radii rx and r , The bending strain-displacement 

relations are linear: k = -w 

strafn relations are also linear: = N - vN , H = D(kx+vky) , etc. 

Y 
= -w and k = -w . The stress- 

,xx ' ky ¶ YY XY , XY X 

X Y X  
Equations of equilibrium can be formulated in terms of a variational principle 

For Donne11 theory the statement of this principle is of virtuzl work. 

!(NX6& +N 6~ +2N 6e +?? 6k +If 6k +2X 6k )dS 
S X Y Y  X Y X Y X X Y Y  X Y X Y  

where Apo is the applied pressure, ANo i s  the stress resultant applied st the 

ends of the shell and 6z = Bu + 6w/rx + w 6w + 6 6w , 6kx - -6w , etc. 
X ,x ,x ,x ,x ,x ,= 

The scalar load parameter 

loading combination considered in t h i s  paper the axial load and lateral pressure 

ere fixed in a definite r a t i o ,  Thus, No and po are assumed fixed in a manner 

appropriate to the particular loading combination. 

associated with this variational principle are the three equilibriu equations, 

which when expressed in terms of the three displacements u , v , w , provide the 
set of Donnell-type equations governing the deformation of the shell. 

_conditio= in this analysis are taken t o  be 

X has been introduced to emphasize that for each 

The differential equations 

Sxndary 

v (the circumferential displacement) 

w M = 0 and Nx = ANo at the ends of the shell, x - 0 , L  . 
X 

The prebucklinp stresses in the perfect shell fo r  a given lateral pressure 

loading Ap0 2nd applied axial stress ANo are uniform, except for  deviations in 

a narrow region near the ends of the shell which will be neglected i n  this analysis. 

The nonzero prebuckling stresses and deformations are 



Xr 
ho - 2[No(r /r +v) + por 3 Y X  Y 

-13- 

(16) 
and 

INITIAL POST-BUCKLING ANALYSIS FOR UNIQUE MODE; BUCKLING 

The notation and development of Koiter's general theory displayed here are 

Only the outline and essential results of the theory 

The reader is referred t o  Reference [ 8 ]  or Koiter's own Work [I] 

taken from Reference [ 8 ] .  

will be given. 

for omitted details and points of rigor which will not be re-established here. 

For brevity, the stress, strain and displacement fields are denoted by 

u , respectively.t 
CI , E and 

The magnitude of the applied load system is taken t o  be directly 

proportional to the load parameter A . 
The strain-displacement relations of the perfect shell are written 

symbolically as 

1 
E = Ll(U) + 2 L2(u) 

where L1 and L2 are, then, homogeneous functionals which are linear and 

quadratic, respectively, in u . In the presence of an initial deflection of the 
unloaded structure G the strain resulting from an additional displacement u is 

where Lil(u,;) = Lll(G,u) is the bilinear, homogeneous functional of u and 

which appears in the identity 

In the general development u is a generalized expression for the displace- t 

ments. It should not be confused with the axial displacement in the Doanell 

theory which bears the same symbol. 
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(19)  LT = H i ( € )  

where H1 is a homogeneous, linear functional. 

Equations of equilibrium are formulated via the principle of virtual work. 

In compact form this principle (Equation (14) for Donne11 theory) is written as 

{ a , 6 ~ )  - XBi(6u) = 0 (20) 

where {0,6c) is the internal virtual work of the stress field ET through the 

strain variation 6~ and XBl(Gu) is the external virtual work of the load 

system of intensity A through the admissible displacement variation 6u . 
The prebuckling deformations of the perfect shells, Equation (16) , are 

linearly dependent on the applied load and are abbreviated as Xu0 . Since the 
prebuckling strains are linearly dependent on the disp:acemeots, i.d., L ~ ( u o >  = 0 , 

the prebuckling stresses, Equation (15) are denoted by Auo and are related to 

Auo by uo = H1[Ll(u0)] . To discover the eigenvalue X and eigenmode u 

for classical buckling we set 
C C 

u = hcUO + uc 

in the field equations and retain only the linear terms in the buckling mode 

The resulting variational equation is, in the compact notation, 

uc . 

hc~LT(),Lll(U,~6U)) + {sc,L1(6uH = 0 (21) 

where s = Ll(uc) . When this Statement is txtenslated izto Earrslell notation the 

differential equations associated with this variational equation are the linear 

buckling equations which, when written in terms of a stress function and the 

normal displacement in the usual manner, become Equations (1) and (2) .  

C 

As previously mentioned, each structure-loading combination investigated in 

this paper has a unique buckling mode associated with the classical buckling load. 

To study the initial post-buckling behavior one writes the total displacement, 

quite generally, as 



. 
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(22) 

where u is now considered 

placement u is taken to be 
C 

% 

normalized in magnitude in a definite way. 

orthogonal t o  u in the sense 

The dis- 

C 

% 
~o0,L11(ucru)) = 0 (23) 

When a structure is imperfection-sensitive, imperfections in the form of the 

buckling mode are most critical. In this study the imperfection is taken as 

- -  
u = SUC (24) 

The initial post-buckling analysis provides an algebraic equilibrium equation 
- 

relating 5. 5. and the load parameter h . This equation is a representation 
which is uniformly valid for small 5 and . To obtain this equation one writes 

'L 
= E2U2 + 53u3 + ... 

acd then 

substituted into the variational equilibrium equation. 

Equation (20) be satisfied for the variation 

relating X to 6 and 

u as given by (22), with the aid of Equations (17)-(19)y is 

The requirement that 

6u = u 65 gives the scalar equation 
C 

-€ (Xc-A) (00 ,L2 (uc) 1 + + P I S c  rL2 (UJ 1 

+ E~[~{S~,L~~(U~,U~)) + {S~,LZ(U~)) + 5 1 {H~(L~(U~)),L~(U~)~I 

- 
+ ots4) + = 'SA{UO,LZ(U~)) + o~sE,Z~) + ( 2 6 )  

where s = Ll(uc)  and s2 = L l ( u p )  . For all variations 6u orthogonal to uc , 

Equation (20) provides the variational equation necessary for determining 
C 

u2 

~c~uoyLll(u2,6u)~ + {SZ,L1(GU)) = 

(27) 
- {sc,Li 1 (uC, 6 d  1 - - 1 { H i  IL2 (u,) 1 ,L1(6~) 1 

2 
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Equation (26) can be written in the form of Equation ( 6 )  given in the body of 

the reportt i.e., 

x x -  (1- x)5 + aS2 + bC3 f ... = - 5 + .. 
C 

x 
C 

where the coefficients a and b are 

and 

SALCULATION OF THE b COEFFICIENT FOR TORGIQAL SBELL SEGXENTS 

The buckling mode ( 4 )  is such that the A VS. 5 relation of the perfect 

and not on its sign and, toroidal shell can depend only on the magnitude of 

tlhus, a must be zero. This can be verified directly by noting that 

5 

1 0  

\?here, consistent with Equation (4), 

w = h sin(Ex/2:sfn(zy!r ' 
C Yl 

and 

f 1 -  Eh2Q2A sin(srx/t) sin(ny/r 
C a2r Y 

Y 

The initial post-buckling behavior, then, is determined by b as long as this 

coefficient does not also vanish. Evaluation of b necessitates solving for u2 . 
A straightforward translation of the variational Equation (27) into Donne11 
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notation followed by the usual calculus of variations procedure leads to three 

simultaneous partial differential equations for up , v2 and w2 These 

equations are 

9v4w2 + 1 
r x  
X 

X Now - 
c x 2,xx 

-2f w - - 1 -[ Eh 1 (w2 +vw2 ) + r(w; 1 +vw2 11 
,Y C¶X Y 

c,xy c,xy 2 2 r c,x c,y 1-v ' x 

with the boundary conditions 

[wz +vw: 1 = 0 at x = 0,R , where 

w2 = w = v2 = 0 and X(2) + $[Eh/(l-v2)] , 2 ,xx X 

= - Eh [ U ~ , ~ + W ~ / ~ ~ + V ( V ~  +w2/r 11 , etc. 
c,x PY X 1-v2 aY Y 

These equations are reduced t o  a much more manageable form if the stress 

function f2 is introduced according to 

1 Xh N ( 2 )  = f2,xx - - -(w2 +vw2 ) C¶Y c,x Y 1-v2 

Then the equations for w2 and f2 become 

- X NOW - X NOW 1 9- 1 
~ 9 ~ ~ 2  + f2,xx f2,yy c x 2,xx c y 2,yy Y rx 

- - - fC,yyWC,XX + fc,xxwc,yy 2fC,XywC,Xy 

and, secondly, the compatibility equation 

W = w 2  - w  W 
1 - -  W 

- 1 94f - - 1 
Eh 2 r 2,xx rx 2,yY c,xY C,xX CSYY 

Y 

(3.1) 



and the boundary conditions reduce to 
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w2 = w = f  = f 2  = 0 at x = O,R 2,xx 2,xx 

A stress function has been introduced and, thus, a further condition is that the 

tangential displacements be single valued over a complete circuit of the shell. 

For v2 this condition is equivalent to 

The right hand sides of Equations (31) 

1. - an3A(nn’g)2 (cos (2*x/!L)+cos (2ny/r )) and 
Y r 

Y 
The solution to Equations (31) and (32) can 

m 

w2 = 1 aisin(inx/R) + cos( 
i91,3,5.. 

and 

and (32) are respectively, 

- 1 h2G2 (n/R) (cos (2nx/ll)+cos (2ny/r )) . 
Y 2 

be written in the separated form 

W 

ny,‘r ) 1 Yisin(irx/e) 
i=1,3,5.. 

zzd the coefficients of these series can be determined with the GalerIcin 

Frocedure, One finds 

(1-V2) 1/2n2hz = a (1-v2) 1/2n2h(Ai2+1/2) /Qi 

Bi nn ” Eh 3‘ Bi aG2Eh3 (n2i2/24z+X i0/2-Az/a2) /Qi 

ai i 

c x  

Yi a 
= 4 n ( l - ~ ~ ) ~ / * n ~ h [ A ( i ~ + 4 , ~ ) ~  + i2/2 + 2z2r /r ]/Hi 

Y X  

(34) 

‘2 3‘ 4~r?Eh~[n~(i~+4n~)~/24~ + $)i2/2 6i = 4an Eh di c x  

+ 2X - 2(i2+4ii2r /r )A/n2]/Hi 
C Y  Y X  

i = 1, 3, 5 ... 



Hi = i[~~(i~+4;~)~/12z + X E0~2i2(i2+4G2)2 + X E04n2n2(i2+4n2)2 
c x  C Y  

-19- 

and where X go = A (1-v2)lI2r No/Eh2 and X io = X (1-v2)1/2r No/Eh2 . 
C Y X  C Y  c Y Y  c x  

That this solution satisfies the single valued conditions can be verified by 

direct substitution into Equation (33) ,  for  example. 

imediately that the 

Alternatively one notes 

y dependent terms in ( 3 4 )  and (35) satisfy Equation (33) .  

Then one can recognize that Equation (32), for the 

solution, when integrated twice with respect to x 

bxmdary conditions is precisely condition (33) .  

is single valued. 

y 

in conjunction with the 

Similarly one can show that 

independent part of the 

u2 

Now, b can be calculated using Equation ( 2 9 )  if it is  noted that 

- f  0; +w w. ) I d s  c,xy c,xv2,y c,y 2,x 

w2 -2f2 w w )dS J(f2 ,,yWf ,IC+% ,xx cry S x y  c,x C,Y S 

The results of t h i s  calculation are 
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i -2A ( 
(12-4) 

I For the three loading cases presented in this paper the b calculations were 

made with the aid of a digital conputer. The series in Equation (36) were 1 
evaluated by taking a sufficiently large number of terms to insure that the 

truncation error was less than 1/10 of one percent. 
1 

i 

The generalized load-deflection relation for the lateral pressure case was 

calculated directly from the expression for the total normal displacement 

I w = xwo + twc + 52w2 + ... 
I Since jwcdS = 0 and C 2  = -(l-A/Ac)/b , the initial post-buckling load-deflectior, 
I 
I relation between the average lateral deflection of the perfect shell and the 

lateral pressure is  

W ave A 
W oc (37) 

where w = h w is  the prebuckling displacement at the critical pressure and oc c o  

This coefficient was calculated using a series representation, not given here, 

which was obtained from the expression for 

convenient to rewrite Equation (37) in the.form given in the body of the paper, 

nmely , 

w2, Equation ( 3 4 ) .  It is more 

1 X  W 

W 
ave h + ;(r -1). -='- 

hc C oc 

where K = - i / q  . Plots of K as a function of z for several values of 



-21- 

r /r 

ends places the same limitation on the load-deflection relation and buckling load- 

imperfection relation as has been remarked on previously with regard to the 

classical buckling analysis. 

are given in Figure 6. Neglection of the distortion of the shell near its 
Y X  

In a similar fashion the axial load-elongation relation for the initial post- 

buckling regime of a perfect shell in axial tension can be calculated directly. 

The average elongation is 

The parameter in the load-deflection relation, Equation (121, is again 

K =I -1'/n where now 
w2 

oc s X 

) - - - -  w2 ]dS -1 ' = 2 m b ~  

and E is the axial elongation at the onset of buckling. A series representation 

for n i s  obtained in a straightforward way. The results of the calculations are 

shown in Figure 11 as plots of K VS. z . 

oc 
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FIG. 9 CLASSICAL BUCKLING OF BOWED-OUT TOROIDAL SEGMENTS 
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